1. Overview & Objectives

Estimated time to complete Module 4: ~8 hours

Video Overview of Module 4 [Duration: 1'48”]

Transcript

“Whether we teach in a traditional, face-to-face setting or online, it is important to empower students with opportunities and the necessary tools to assume more ownership of their learning. This entails creating contexts where students are more collaborative, take more control, and simply do more of the work than they did in a teacher- and lecture-centered classroom.

Research tells us that to really learn something it takes a combination of attention, practice, effort, connection, and reflection, in an environment that supports learning through discovery. It is up to us to both create such an environment and lay down a solid, course-related discovery path for students to follow. Assuming successful creation and communication of learning objectives that are tightly aligned with learning activities and resources, and of clear and succinct course-progression expectations and instructions, it is all a matter of laying down a discovery path that is marked by frequent assessment of team-and project-based learning activities. This module will examine strategies and practices that help us accomplish this goal.

A pivotal step for success in our task is creating productive and engaging course-related interaction contexts, where students learn from each other and take advantage of instructor feedback during the assignment-drafting process. Along with our online activities devoted to this step, we will wrap up the module by exploring technologies that support engagement in online conversations.

Good luck working on this module and I’ll see you all on Friday.”
Topics

- Learning through discovery: student-centered and project-based learning
- Learning through interaction: peer instruction and discussion- and team-based learning
- Exploring technologies that support engaging and productive online conversations

Objectives

- Recognize the close relationship of learner engagement and motivation to task frequency, format, variety, complexity, and reward
- Identify the key elements of student-centered and project-based learning, recognize the benefits of the ensuing learning-through-discovery, and identify practical ways to nurture such learning in the online environment
- Recognize the learning and time-management benefits of online discussion activities, group work, peer instruction, and instructor feedback during the assignment-drafting process
- Compose discussion-based and other learning activities that incorporate the strategies introduced in this module
- Participate in asynchronous online interactions, in low- and high-stakes contexts
- Get acquainted with VoiceThread, a tool that facilitates online conversations around media (e.g. images, videos, presentations, documents, etc.)
2. Assignments and Resources

Assignment 1

Work with your group to share ideas on how to design assignments that support student-centered, project-based, and team-based learning. More specifically, consider the following guiding questions (all questions are addressed in the module’s lecture notes):

1. How would you structure your course modules to make students feel they discover rather than receive knowledge, all the while following a discovery path preconfigured by you?
2. What are some specific assignment ideas that would reveal to the students the significance of their newly acquired knowledge? That is, what assignments can you describe that go beyond information recall and involve the analysis of a case study or the solution to a problem whose relevance can be recognized by the students?
3. How would you design your assignments so that open-book and collaborative assignment-completion contexts support learning rather than constitute cheating?
4. How would you motivate all students to actively contribute to group projects?
5. How can you efficiently participate in the assignment-drafting process so that your expert feedback is actually incorporated in the student's learning and the submitted assignments?

Resources

- Module 4 Lecture Notes: Parts 1 & 2
- Collaboration Instructions for Group Assignments in DOTS (.pdf)
- "Work Groups" menu area
 Enter the "Work Groups" area, click on the "Group" that includes your name, enter the "Group Discussion Board," and select the "Module 4: Assignment 1" forum. Additional instructions are included in the forum's description.

Timeline

- **Start:** Saturday, 5/16
- **End:** Open-ended discussion; no submission required
Assignment 2

Use the ideas developed during Assignment 1 to rework the sample assignments for your prospective online course originally drafted during Module 2 (you may create new assignments if you wish). Your task is to write assignment descriptions and instructions that provide contexts for student-centered, project-based, and team-based learning. Enter the information in your personal DOTS Blackboard course. You will continue building this course throughout DOTS and will be fine-tuning it for presentation during Module 6.

Resources

- Module 4 Lecture Notes: Parts 1 & 2 (same as in Assignment 1)
- Collaboration Instructions for Group Assignments in DOTS (.pdf)
- Your personal DOTS Blackboard course

Timeline

- **Start:** Tuesday, 5/19
- **End:** Friday, 5/22, 12:30 a.m. (i.e. late Thursday night)
Student-Centered and Project-Based Learning

"We never educate directly, but indirectly by means of the environment. Whether we permit chance environments to do the work, or whether we design environments for the purpose makes a great difference."

All three types of learning addressed in this module are closely interrelated features of backward design, which is, more or less, a practical implementation of constructivism to education. [http://carbon.cudenver.edu/~mryder/itc_data/constructivism.html]

To be successful, each type must incorporate key features of the others. For example, student-centered learning must involve collaborative problem-solving activities, project-based learning must involve self-directed student-interaction contexts, and team-based learning must focus on student engagement in authentic real-world problems (Hacker and Niederhauser, 2000).

The three types of learning are presented separately simply to facilitate highlighting their distinguishing features.

A. Student-Centered Learning

Overview

Student-centered learning (also referred to as learner-centered or self-regulated learning) is characterized by more varied assignment offerings, more first-hand exploratory learning experiences, and higher interactivity than traditional, teacher-centered approaches. Online learning lends itself well to this approach due to both necessity (e.g. the instructor of an online course can no longer be at the center of the learning process) and possibility (e.g. online environments support extensive exploration of multiple types of interaction contexts among students and between students and learning resources).

"Networked Student" - A five-minute video on constructivism by Wendy and Andy Drexler

More information and credits at http://www.youtube.com/watch?v=XwM4ieFOotA

Well-designed, student-centered approaches have been shown to improve learning, as measured by the number of new concepts learned in a given course and by the students' ability to apply concepts learned to contexts different from those in which the information was originally presented (Doyle, 2008; Mazur, 1997). This has been shown to also be the
case for counterintuitive concepts, which have traditionally been the most difficult to retain, let alone understand (Doyle, 2008; Wienman and Perkins, 2005).

Contrary to what its name may suggest, student-centered learning entails neither students freely shaping their own “classroom” experience nor instructors spending less time preparing for a class. Rather, it entails instructors creating student challenges that

1. apply and assess the course’s learning objectives,
2. are supported by well-selected resources that present the material in a variety of contexts and address a variety of learning styles,
3. encourage students to work together and learn from each other, and
4. help reveal student attitudes towards learning, offering opportunities for mutual (i.e. by the instructor and the students) adjustment.

In other words, student-centered learning entails instructors helping students discover for themselves the knowledge and skills offered in a course, by carving a challenging but well-supported discovery path for them to explore. Course content and instructor expertise are, therefore, still central to learning. What is new is the manner in which learning unfolds (i.e. instructors lay down the path and students lead the path’s exploration) and the final outcome (i.e. significantly improved motivation, satisfaction, confidence, and, not surprisingly, success). Discovering rather than being given knowledge provides students with a sense of ownership of the materials that helps promote deep learning.

When it comes to how and what students should learn, the false dichotomy between focusing on facts versus focusing on problem-solving and critical-thinking skills obscures the close interdependence between fact and skill acquisition. Without an adequate level of initial learning of facts, development of problem-solving and critical-thinking skills cannot be expected. Both, fact and skill acquisition are therefore necessary and both are enhanced when attached to meaningful and interactive problem-solving activities (Bransford et al., 2003).

Questions and answers guiding student-centered course design

Q. What do I need to control to effectively teach this course?
 A. Regular student involvement in objectives-based, challenging, and graded learning activities.

Q. What can I give over to the students?
 A. The "spotlight" (i.e. priority on content commentary and discussions).

Q. How can I create a real community in the classroom?
 A. Create engaging (i.e. authentic, relevant, interesting, well-supported, and important —see "graded") interaction contexts.

Q. How can I get students to take more responsibility for their learning?
 A. Provide students with the minimum necessary resources to address the course challenges, along with information on the type and possible location of additional relevant resources.
 A. Learn who your students are and how they think. You may use a learning-styles survey, such as this concise survey by Conner (2003) [http://agelesslearner.com/assess/learningstyle.html] or one of the many extensive surveys available online [http://www.learning-styles-online.com/inventory/questions.asp].
See also the VARK Inventory of learning-styles questionnaires
[http://honolulu.hawaii.edu/intranet/committees/FacDevCom/guidebk/teachtip/vark.htm].

A. Address possible unconstructive preconceptions. E.g.:
 - Dispel the myth that intelligence is fixed at birth.
 - Help students appreciate effort as a tool to improve intelligence and abilities rather than a sign of weakness.
 - Help students see failure as a constructive, intermediate step in the path to success.

Q. How do I address student resistance to teamwork and to the transfer of responsibility to them?

A. Don’t give in to the students’ initial complaining and unhappiness with this new approach. Communicate to them that learning is a social and emotional process, most learning occurs in community, and professionals rarely operate in isolation. Remain consistent, model expected behavior, and persist until their first success (usually by the first two to three assignments) eases their resistance.

For more information you may consult

- an expanded discussion on similar tips (Chickering and Gamson, 1987) [http://www.aahea.org/bulletins/articles/sevenprinciples1987.htm],
- some implementation ideas for the digital classroom (Chickering and Ehrmann, 1996) [http://www.aahea.org/bulletins/articles/sevenprinciples.htm], and
- a set of learner-centered assessment tips (Waterloo University, Canada) [http://cte.uwaterloo.ca/teaching_resources/teaching_tips/tips_assessment/learner_centered_assessment.pdf].

Courses following the backward-design process are, by definition, student centered, while all well-designed, student-centered learning always also incorporates project-and team-based learning contexts.

B. Project-Based Learning

Overview

Project- or problem-based learning (PBL) is probably the most common form of challenge-based or authentic learning. Other forms include case-based learning, inquiry learning, learning by design, and more. Forms differ in challenge type and in the corresponding mental processes involved (e.g. exploration, reflection, role-playing, or construction/design respectively).

Regardless of the specific challenge in question, all versions are similar in that they first present students with a challenge, which becomes the context for seeking information. Consequently, learning is not the result of instruction but of working toward the understanding or resolution of a problem. Challenges must be carefully structured so that important course content is covered naturally, emerging from the exploration of the challenge. This is probably the most difficult course-design task facing instructors.
Features of PBL

- PBL is student-centered, integrated, and collaborative, with instructors assuming a facilitating/guiding role.
- PBL employs challenges that focus student efforts on the selected objectives and content, stimulate the students’ desire to learn, and provide opportunities for the development of critical-thinking skills.

Students who engage in PBL ideally acquire

- an extensive, integrated, and multidisciplinary knowledge base,
- critical- and creative-thinking competencies,
- problem-solving proficiency,
- self-directed learning strategies, and
- collaborative skills.

Problem-Based Learning - A 3'30" video from the Institute of Physics
More information and credits at http://www.youtube.com/watch?v=lHhWWhl1Zd8

For a more detailed outline of the features and advantages of challenge-based learning you may consult Tomorrow’s Professor Mailing List [http://ctl.stanford.edu/Tomprof/postings/773.html] (Stanford University) and the “References and Additional Resources” page of Module 4.
Team-Based Learning

A. Overview

The advantages of team-based (or group-based, peer-to-peer, collaborative, etc.) learning have been well identified, tested, and demonstrated in the literature (e.g. Berge, 2002; Klemm, 1998; Liu et al., 2002; Mazur, 1997, Michaelsen et al., 2004; Rinear, 2003; Sherron and Boettcher, 1997; Swan et al., 2006; Sweet and Michaelsen, 2007).

Key features of effective team-based learning

- Permanent and purposefully heterogeneous work groups that promote group community-building (i.e. interdependence of members) and consideration of varied backgrounds and points of view.
- Peer instruction and evaluation features that facilitate development of writing, argumentation, and interpersonal skills.
- Course modules comprised primarily of frequent, resource-supported, instructor-monitored, and graded group activities that pace the team members' development in the course and require/support/ensure content coverage, attention to instructor feedback, and individual accountability and grading of team members.

Well-designed collaborative-learning contexts accomplish

- student motivation and engagement,
- meaningful instructor-to-student and student-to-student interactions,
- instructor- and peer-led learning, and
- formative (i.e. guiding) and summative (i.e. evaluative) assessment, by wrapping a course around a set of self-contained, resource-supported, instructor-monitored, and interrelated group assignments.

B. Facilitating & Managing Team-Based Learning: Potential Problems

In practice, working in groups includes numerous potential drawbacks that challenge its effectiveness as a learning tool. Watch the two short videos below for some relevant insights by Drs. Rubin (6':00") and Opitz (2':30"). The videos were filmed by IDD Video Services and posted on http://vimeo.com

http://vimeo.com/420297 [no transcript available]

http://vimeo.com/420245 [no transcript available]
What undermines the effectiveness of teamwork?

For the most part, team-based contexts and activities are introduced in addition to a course’s standard assessment tools and consist of open-ended, low-stakes online discussion forums and student-dreaded group projects.

- Discussion forums usually involve little direction/monitoring beyond specifying discussion-etiquette rubrics and the minimum number of required posts, contributing to discussions that are often tedious and take up a large amount of the instructor’s and students’ time with minimal return.

- Group projects usually become sources of frustration for those in the group that end up doing most of the work or provide disengagement excuses for those in the group that are not motivated to do well in the class. Ultimately, group work can generate anticlimactic grade experiences that neither recognize nor fulfill anyone, while also failing to truly capture if and how much learning has occurred.

Common pitfalls of collaborative work therefore include:

1. Tedious online discussions that produce little more than busywork for instructors and students.
2. Potentially unfair distribution of workload among group members.
3. Potential internal allocation to only portions of the full assignment to each group member, resulting in an incomplete image of the course material to all members.
4. An impersonal group grade that fails to address each student’s individual contribution, skills, and accomplishments, consequently failing to truly motivate any of the students.

C. Facilitating & Managing Team-Based Learning: Suggested Practices

Group formation and size

If a high degree of uniformity can be assumed in terms of the student's overall education, interests, and general background, groups may be formed by the instructor through random membership assignment, assignment by last name, or any other nonsystematic assignment method. The uniformity assumption is likely to hold in cases where the online students come from the same program or institution and are past their first year of study.

For more diverse audiences, research suggests that self-formation of student groups is the most effective method (Lawrence-Slater, 2006).

In an example of self-formation of groups, students are asked to post a brief biography including their interests, the degree being studied, their institutional affiliation, an email address, and (ideally, but not necessarily) an image of themselves. All participants then access these details and "meet" others with a view to forming a group. This technique enables the formation of potentially successful work groups, facilitates community building, and constitutes an initial, low-stakes task where students experience online collaboration and can demonstrate to the instructor that they are able to successfully complete a collaborative task.
In terms of group size, a quad (i.e. four students per group) is generally considered the ideal. The group is large enough to include the diversity of opinions, experiences, and learning styles needed to facilitate problem solving but not so large that students can get lost or hide.

Effective design and management of team-based learning

Overview

The discussion-based and instructor-moderated group-work management method outlined below has been designed to promote meaningful participation of all members in a group, facilitate peer learning and evaluation, reduce student anxiety with regards to assignment completion, and ensure that instructor feedback will appear at a time when it is likely to have the most impact on student learning (i.e. before assignment completion).

Collaborative-assignment management

- Groups of ideally four students draft and edit each assignment online, with input from the instructor, and submit it via an appropriate discussion forum.
- Each assignment question constitutes a separate set of discussion threads that includes one thread for drafting and one for submission of the assignment responses.
- Students are permitted to modify and build on their posts, a feature that helps alleviate some of their fear of error and positively influences their engagement and performance.
- The instructor follows and grades the entire process of assignment drafting, rather than simply the final submission, converting his/her traditional “judge-like” role to that of a coach. This motivates students to enter into useful lively debates about their assignments, working, in the process, on their argumentation, critical-thinking, collaboration, reading/writing/editing, and timeliness skills.

Such a setting both requires and facilitates monitored student-to-student and student-to-instructor interactions. It presents students with instructor-guided opportunities to clarify, deepen, and communicate their grasp of the materials and instructors with the information needed to grade each group member individually.

Assessment-driven collaborative learning

In the described context, group members are able to:

- make their own individual contributions to the assignment questions, while gauging their understanding of the supporting material relative to that of the rest of the group members;
- comment on and edit the contributions of their fellow group members and enter into meaningful, assignment-related discussion with their peers and the instructor;
- take advantage of instructor feedback during the assignment-drafting process;
- improve their skills and confidence as writers, editors, debaters, and peer reviewers, as they argue their points to come to a group consensus;
- earn an individual grade that fairly reflects their contributions to the group assignments.
The proposed design has all the communication and critical-thinking-skills practice advantages of group work without the disadvantages outlined in the previous section. By being part of the drafting process, the instructor has the opportunity to provide feedback that students will pay attention to and which will make a difference in their understanding of the materials, argumentation skills, and overall performance. Such feedback can be personalized (answering a student’s assignment-related posts) while avoiding duplication (the feedback is available to all students in the group). In addition to providing opportunities for in-depth discussion on issues raised within the course materials, the recorded discussions end up also constituting the students’ personalized lecture notes.

The resulting assessment-driven collaborative context supports a useful mix of personalized, collaborative, and actively enhanced learning and helps assess learning outcomes in a comprehensive, dynamic, individual, and fair manner. Both open-book completion of assignments and student collaboration are encouraged, putting more emphasis on understanding and application rather than simple memorization of the course materials, while avoiding easy cheating, a common assessment problem especially in online courses.

In other words, discussion-based and instructor-monitored and assisted group assignments provide a single place where both faculty- and peer-led instruction transpires, personalized lecture notes are created, meaningful discussions and collaborations take place, assignments are completed, formative and summative assessment is facilitated, and learning occurs.

On average, courses following the suggested format have resulted in two grade levels improvement, 10 percent reduction in instructor workload (quantified in terms of the time devoted to grading and entering feedback to assignments), and 30 percent improvement in student satisfaction, when compared to other versions of the same courses (Vassilakis, in press).

D. Examples

- The collaborative assignments in DOTS and in the previously reviewed "Topics in Musicianship" course represent attempts to facilitate student-centered, project-based, and team-based learning.

- Sample communication courses implementing a problem-based approach to learning. Samford University, Birmingham, AL. [http://www.samford.edu/schools/artsci/comarts/pbl.htm]

- Project-based collaborative assignments from the University of Delaware [http://www.udel.edu/inst/problems]
 See, for example, “The Colorado River; Whose water is it anyway?” [http://www.udel.edu/inst/problems/colorado/]
• Student-centered, project-based, and team-based strategies and assignment examples compiled by the University of Maryland, University College (some links to examples on this site are broken). [http://www.umuc.edu/virtualteaching/module1/strategies.html]
 Examples include a historical "whodunit?" created by the University of Victoria, Canada. [http://www.canadianmysteries.ca/sites/robinson/home/indexen.html]

• Examples of problem-based learning activities by the Australian Flexible Learning Network. [http://designing.flexiblelearning.net.au/gallery/activities/problem_based.htm]

• IRC Français. Project designed to help students learn French through active conversation with other students. Georgia Institute of Technology. [http://www.cc.gatech.edu/elc/ircfrancais/]

• Web resources on collaborative and student-centered learning accompanying MacGregor et al. (2000). University of Minnesota. [http://www.ce.umn.edu/~smith/ndtlcl/weblinks.html]

• Resources on writing project-based collaborative assignments. Medical School, McMaster University, Ontario, Canada. [http://www-fhs.mcmaster.ca/pbls/writing/contents.htm]

• Guidelines for drafting group-problem-solving activities. Illinois Online Network. [http://www-ion.uillinois.edu/resources/otai/GroupProblemSolving.asp]

E. Quality Matters Standards

Standard 5: Learner Engagement (.pdf)
"Meaningful interaction between the instructor and students, among students, and between students and course materials is employed to motivate students and foster intellectual commitment and personal development."

| Standard 5.1: The learning activities promote the achievement of the stated learning objectives |
| Standard 5.2: Learning activities foster instructor-student, content-student, and student-student interaction |
| Standard 5.3: Clear standards are set for instructor responsiveness and availability (turn-around time for email, grade posting, etc.) |
| Standard 5.4: The requirements for student interaction are clearly articulated |

References and Additional Resources

Review these optional additional resources for more information on the module's topics:

[http://www.iddresources.org/dots1long/module4/module04_additional.html]
5.1. The learning activities promote the achievement of the stated learning objectives. (Note: in some institutions learning objectives may be called learning outcomes.)

Alignment: Learning activities should align with the course and module objectives of the course (see Standards 2.1 and 2.2) by engaging students in activities that directly contribute to the achievement of those objectives and integrating smoothly with the tools and media (Standard 6.1) that enable these activities.

The purpose of learning activities is to facilitate the student’s achievement of the stated objectives.

The learning activities should actively engage the learner with the course content. Learning activities are varied in order to provide reinforcement and mastery in multiple ways and to accommodate multiple learning styles. Activities may include reading assignments, student presentations, science labs, class discussions, case studies, role playing, simulation exercise, practice quizzes, tests, etc.

Examples of mismatches between activities and objectives:

1. The objective requires students to be able to deliver a persuasive speech, but the activities in the course do not include practice of that skill.
2. The objective is “Prepare each budget within a master budget and explain their importance in the overall budgeting process.” The students review information about this in their texts and observe budgets worked out by the instructor, but they themselves produce only one of the several budgets.

Hybrid Courses: In courses that use both the online and face-to-face settings, the learning activities that occur in these two settings should be connected by a common thread or theme and should be mutually reinforcing. The connection and reinforcement are made clear to students. For example, the different parts of a particular activity might be sequenced in an alternating way in online and face-to-face meetings of the course.

Special Situations: When course objectives are institutionally mandated, the reviewer should refer to module/unit objectives to assess standard 5.1.

5.2. Learning activities foster instructor-student, content-student, and if appropriate to the course, student-student interaction.

Interactions between the instructor and the students are designed to facilitate students’ understanding and mastery of the learning objectives. These interactions may be supportive (welcome and introduction messages, “about the instructor,” weekly announcements) and instructional (direct instruction, assignment feedback, FAQs, etc…). The communications between student and instructor may be one-to-one (personal emails) or one-to-many (forum postings, class announcements).
The degree and type of student-to-student interaction may vary with the discipline and the level of the course. Not all courses require the same type and frequency of student-to-student interaction. Careful consideration of how the student-to-student interactions support the course objectives will lead to a more efficient and effective design. Examples of student-to-student interactions may include self-introductions, group discussion postings, small-group projects, peer critiques, etc.

Refer to the Instructor Worksheet to determine if student-student interaction is appropriate for this course. If the Worksheet indicates that such interaction is appropriate, then consider it in deciding whether the standard is met. If the Worksheet indicates that such interaction is not appropriate, then focus only on student-to-content and instructor-to-student interaction to determine whether the standard has been met. When you think it is appropriate to do so, include a recommendation that student-student interaction be added to the course or receive more emphasis in the course.

NOTE: Your evaluation should be based on what you find to be the nature of the course and not on your personal preferences about student-student interaction.

5.3. Clear standards are set for instructor responsiveness and availability (turn-around time for email, grade posting, etc.).

A clear statement of instructor responsibilities is an important component of an online or hybrid course. Students are better able to manage their course activities when the instructor has stated his or her timeframe for responding to student emails and discussion postings and letting students know when they will receive feedback on assignments and when grades will be posted. By sharing these expectations, the instructor also deflects unrealistic student expectations of 24/7 service from the instructor. Frequently these expectations are conveyed in the syllabus or the "meet the instructor" message.

If it is necessary to alter the standards during the course, the instructor is encouraged to clearly communicate the adjustments to the students.

5.4. The requirements for student interaction are clearly articulated.

A clear statement of the instructor’s expectations with regard to student participation in required course interactions (frequency, length, timeliness, etc.) help students plan and manage their class participation and provide a basis for the instructor to evaluate student participation. The more specifically these expectations are defined, the easier it is for the learner to meet and adhere to the standards.

Typically, general statements of student performance expectations are included in the course information page or syllabus. These general requirements may specify the nature of the required participation and expectations for frequency and quality of the student’s interactions. More specific task-related performance expectations may be included in the individual task description. The instructor may also share with students a rubric detailing how student interactions are evaluated, including reading and responding to the instructor's and classmates' posts.
WORK GROUPS - MODULE 4: ASSIGNMENT 1

Forum Instructions

Work with your group to share ideas on how to design assignments that support student-centered, project-based, and team-based learning. More specifically, consider the following guiding questions (all questions are addressed in the module's lecture notes):

1. How would you structure your course modules to make students feel they discover rather than receive knowledge, all the while following a discovery path preconfigured by you?
2. What are some specific assignment ideas that would reveal to the students the significance of their newly acquired knowledge? That is, what assignments can you describe that go beyond information recall and involve the analysis of a case study or the solution to a problem whose relevance can be recognized by the students?
3. How would you design your assignments so that open-book and collaborative assignment-completion contexts support learning rather than constitute cheating?
4. How would you motivate all students to actively contribute to group projects?
5. How can you efficiently participate in the assignment-drafting process so that your expert feedback is actually incorporated in the student's learning and the submitted assignments?

- Refer to the assignment resources and the Collaboration Instructions for Group Assignments in DOTS document.
- You should, by now, be familiar with the message posting process.
- Include a meaningful subject line in your posts that clearly communicates the overall topic of your message. For replies to existing messages, it may often be necessary to modify the existing subject line to better represent the response’s content, before hitting the "Reply" button.
Module 4 Face-to-Face Meeting Agenda

Date: Friday, May 22
Time: 3:00 PM – 6:00 PM
Location: JTR300

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00-3:15 PM</td>
<td>Reflections on the Online Portion of Module 4</td>
<td>Pantelis Vassilakis, Instructional Design Consultant, IDD and DOTS participants</td>
</tr>
<tr>
<td>3:15-4:15 PM</td>
<td>“Extreme Makeover: Online Course Edition”</td>
<td>Michelle Pacansky-Brock, recipient of the 2007 Sloan-C Excellence in Online Teaching Award, Professor, Department of Art History, Sierra College, California</td>
</tr>
<tr>
<td>4:15-4:45 PM</td>
<td>Dinner / Discussion</td>
<td></td>
</tr>
<tr>
<td>4:45-6:00 PM</td>
<td>Hands-on Training on VoiceThread</td>
<td>Michelle Pacansky-Brock</td>
</tr>
</tbody>
</table>