
44 Computer Music Journal

Kelly Fitz,* Lippold Haken,†

Susanne Lefvert,†† Corbin Champion,§

and Mike O’Donnell¶
*Department of Electrical Engineering
and Computer Science
Washington State University
k� tz@eecs.wsu.edu
†CERL Sound Group
University of Illinois at Urbana-Champaign
lippold@cerlsoundgroup.org
††Lulea University of Technology and
Department of Computer Science,
University of Chicago
slefvert@hotmail.com
§Department of Electrical Engineering
and Computer Science
Washington State University
corbinchampion@hotmail.com
¶Department of Computer Science
University of Chicago
odonnell@cs.uchicago.edu

Cell-Utes and
Flutter-Tongued Cats:
Sound Morphing
Using Loris and the
Reassigned Bandwidth-
Enhanced Model

Computer Music Journal, 27:3, pp. 44–65, Fall 2003
q 2003 Massachusetts Institute of Technology.

The reassigned bandwidth-enhanced additive sound
model is a high-� delity sound representation that
allows manipulations and transformations to be ap-
plied to a great variety of sounds, including noisy
and inharmonic sounds. Combining sinusoidal and
noise energy in a homogeneous representation, the
reassigned bandwidth-enhanced model is ideally
suited to sound morphing and is implemented in
the open-source software library Loris. This article
presents methods for using Loris and the reassigned
bandwidth-enhanced additive model to achieve
high-� delity sound representations and manipula-
tions, and it introduces software tools that allow
programmers (in C/C ` ` and various scripting lan-
guages) and non-programmers to use the sound
modeling and manipulation capabilities of the Loris
package.

The reassigned bandwidth-enhanced additive
model is similar in spirit to traditional sinusoidal
models (McAulay and Quatieri 1986; Serra and
Smith 1990; Fitz and Haken 1996) in that a wave-
form is modeled as a collection of components,
called partials, having time-varying amplitude and
frequency envelopes. Our partials are not strictly
sinusoidal, however. We employ a technique of

bandwidth enhancement to combine sinusoidal en-
ergy and noise energy into a single partial having
time-varying frequency, amplitude, and noisiness
(or bandwidth) parameters (Fitz, Haken, and Chris-
tensen 2000a). The bandwidth envelope allows us
to de� ne a single component type that can be used
to manipulate both sinusoidal and noisy parts of
sound in an intuitive way. The encoding of noise
associated with a bandwidth-enhanced partial is ro-
bust under time dilation and other model-domain
transformations, and it is independent of other par-
tials in the representation.

We use the method of reassignment (Auger and
Flandrin 1995) to improve the time and frequency
estimates used to de� ne our partial parameter en-
velopes. The breakpoints for the partial parameter
envelopes are obtained by following ridges on a
reassigned time-frequency surface. Our algorithm
shares with traditional sinusoidal methods the no-
tion of temporally connected partial parameter esti-
mates, but by contrast, our estimates are
non-uniformly distributed in both time and fre-
quency. This model yields greater resolution in
time and frequency than is possible using conven-
tional additive techniques and preserves the tempo-
ral envelope of transient signals, even in modi� ed
reconstruction (Fitz, Haken, and Christensen
2000b).



45Fitz, Haken, Lefvert, Champion, and O’Donnell

The combination of time-frequency reassignment
and bandwidth enhancement yields a homogeneous
model (i.e., a model having a single component
type) that is capable of representing at high � delity
a wide variety of sounds, including inharmonic,
polyphonic, impulsive, and noisy sounds. The ho-
mogeneity and robustness of the reassigned
bandwidth-enhanced model make it particularly
well-suited for such manipulations as cross synthe-
sis and sound morphing.

Reassigned bandwidth-enhanced modeling and
rendering and many kinds of manipulations, in-
cluding sound morphing, have been implemented
in an open-source software package called Loris.
However, Loris offers only programmatic access to
this functionality and is dif� cult for non-
programmers to use. We begin this article with an
introduction to the selection of analysis parameters
to obtain high-� delity, � exible representations us-
ing Loris, and we continue with a discussion of the
sound morphing algorithm used in Loris. Finally,
we present three new software tools that allow
composers, sound designers, and non-programmers
to take advantage of the sound modeling, manipu-
lation, and morphing capabilities of Loris.

Reassigned Bandwidth-Enhanced
Analysis Parameters

We have designed the reassigned bandwidth-
enhanced analyzer in Loris to have parameters that
are few and orthogonal. That is, we have mini-
mized the number of parameters required and also
minimized the interaction between parameters, so
that changes in one parameter would not necessi-
tate changes in other parameters. Moreover, we
have made our parameters hierarchical, so that in
most cases, a good representation can be obtained
by adjusting only one or two parameters, and only
rarely is it necessary to adjust more than three.
Consequently, and in contrast to many other addi-
tive analyzers, the parameter space of the reas-
signed bandwidth-enhanced analyzer in Loris is
smooth and monotonic, and it is easy to converge
quickly on an optimal parameter set for a given
sound.

The reassigned bandwidth-enhanced analyzer can
be con� gured according to two parameters: the in-
stantaneous frequency resolution (or minimum in-
stantaneous frequency separation between partials)
and the shape of the short-time analysis window,
speci� ed by the symmetrical main lobe width in
Hz.

The frequency resolution parameter controls the
frequency density of partials in the model data.
Two partials will, at any instant, differ in fre-
quency by no less than the speci� ed frequency res-
olution. The frequency resolution should be
slightly less than the anticipated difference in fre-
quency between any two adjacent partials. For
quasi-harmonic sounds (sounds having energy con-
centrated very near integer multiples of a funda-
mental frequency), the anticipated frequency
difference between adjacent partials is equal to the
harmonic spacing, or the fundamental frequency,
and the frequency resolution is typically set to 70–
85% of the fundamental frequency. For inharmonic
sounds, some experimentation may be necessary,
and intuition can often be obtained using a spectro-
gram tool.

The shape of the short-time analysis window
governs the time-frequency resolution of the reas-
signed spectral surface, from which bandwidth-
enhanced partials are derived. An analysis window
that is short in time, and therefore wide in fre-
quency, yields improved temporal resolution at the
expense of frequency resolution. Spectral compo-
nents that are near in frequency are dif� cult to re-
solve, and low-frequency components are poorly
represented, having too few periods in each win-
dow to yield stable and reliable estimates of fre-
quency and amplitude. A longer analysis window
compromises temporal resolution but yields greater
frequency resolution. Spectral components that are
near in frequency are more easily resolved, and
low-frequency components are more accurately
represented; however, short-duration events may
suffer temporal smearing, and short-duration
events that are near in time may not be resolved.
(See, for example, Masri, Bateman, and Canagarajah
1997 for a discussion of issues surrounding window
selection in short-time spectral analysis.)

The use of time-frequency reassignment im-
proves the time and frequency resolution of the



46 Computer Music Journal

reassigned bandwidth-enhanced model relative to
traditional short-time analysis methods (Fitz,
Haken, and Christensen 2000b). Speci� cally, it al-
lows us to use long (narrow in frequency) analysis
windows to obtain good frequency resolution with-
out smearing short-duration events. However, mul-
tiple short-duration events occurring within a
single analysis window still cannot be resolved.
Fortunately, the improved frequency resolution
from time-frequency reassignment also allows us to
use short-duration analysis windows to analyze
sounds having a high density of transient events
without greatly sacri� cing frequency resolution.

The choice of analysis window width depends on
the anticipated partial frequency density. The win-
dow width is the width of the main lobe of the
Fourier transform of the Kaiser analysis window,
measured between zeros in the magnitude spec-
trum. Generally, the window width is set equal to
the anticipated minimum instantaneous frequency
difference between any two partials, or the funda-
mental frequency in the case of quasi-harmonic
sounds. For quasi-harmonic sounds, it is rarely nec-
essary to use windows wider than 500 Hz, although
good results have been obtained using windows as
wide as 800 Hz to analyze a fast bongo roll. Simi-
larly, for very low frequency quasi-harmonic
sounds, best results are often obtained using win-
dows as wide as 120 Hz.

All other parameters of the Loris analyzer can be
con� gured automatically from the speci� cation of
the frequency resolution and analysis window
width parameters, but they are also independently
accessible and con� gurable.

The frequency drift parameter governs the
amount by which the frequency of a partial can
change between two consecutive data points ex-
tracted from the reassigned spectral surface. This
parameter is generally set equal to the frequency
resolution, but in some cases, for example in quasi-
harmonic sounds having strong noise content, the
frequency of some low-energy partials may tend to
occasionally ‘‘wander’’ away from the harmonic
frequency, resulting in poor harmonic tracking. In
these cases, reducing the frequency drift to, say, 0.2
times (one-� fth) the fundamental frequency may
greatly improve harmonic partial tracking, which is
important for manipulations such as morphing.

The hop time parameter speci� es the time differ-
ence between successive short-time analysis win-
dow centers used to construct the reassigned
spectral surface. Data are generally obtained from
each analysis window for all partials active at the
time corresponding to the center of that window,
so the hop time controls, to some degree, the tem-
poral density of the analysis data (though, thanks
to the use of time-frequency reassignment, it con-
trols the temporal resolution of the data to a much
lesser degree). The hop time used by the reassigned
bandwidth-enhanced analyzer in Loris is normally
derived from the analysis window width according
to a heuristic for short-time Fourier analysis de-
scribed by Allen and Rabiner (1977). In many cases,
it is possible to increase the hop time, thereby re-
ducing the volume of data, by a factor of two with-
out compromising the quality of the
representation. In other cases, it may be desirable
to decrease the hop size, although we have never
encountered such a situation.

In some instances, it is convenient to set the
minimum instantaneous partial frequency indepen-
dently of the frequency resolution. This can be ac-
complished by setting the frequency � oor
parameter, which is otherwise (by default) set equal
to the frequency resolution. Similarly, it is occa-
sionally useful to raise the amplitude � oor parame-
ter from its default value of –90 dB. This parameter
represents an amplitude threshold, relative to a
full-amplitude sinusoid, below which reassigned
spectral components are considered insigni� cant
and are not used to form partials.

Figure 1 demonstrates the use of the Loris proce-
dural interface (in the C language) to perform a
reassigned bandwidth-enhanced analysis of a clari-
net tone having a fundamental frequency of approx-
imately 415 Hz. The reassigned
bandwidth-enhanced partials obtained from the
analysis are exported to a Sound Description Inter-
change Format (SDIF) data � le (Wright et al. 1999).

Sound Morphing in Loris

We distinguish sound morphing from other kinds
of sound transformations that are sometimes



47Fitz, Haken, Lefvert, Champion, and O’Donnell

Figure 1. C code using the
Loris procedural interface
to perform a reassigned
bandwidth-enhanced anal-

ysis of a clarinet tone that
has a fundamental fre-
quency of approximately
415 Hz.



48 Computer Music Journal

1 1.1 1.2
290

310

330

Plot of Frequencies for Two Source Partials and a Morphed Partial

Time (seconds)

F
re

q
ue

n
cy

 (
H

z)

Frequency of flute partial (D4)
Frequency of fluttertongued flute partial (E4)
Frequency of morphed partial

1 1.1 1.2
0.1 

0.2

0.3 
Plot of Amplitudes for Two Source Partials and a Morphed Partial

Time (seconds)

A
m

p
lit

ud
e

Amplitude of fluttertongued flute partia l
Amplitude of flute partial
Amplitude of morphed partial

loosely characterized as ‘‘morphing,’’ such as cross
synthesis. In sound morphing, the original source
timbres are obtained at the extrema of the morph-
ing envelopes. That is, one source sound is pro-
duced when the envelopes have value 0, the other
source is produced when the envelopes have value
1, and hybrid sounds are obtained from other enve-
lope values.

Sound morphing using traditional additive sound
models is conceptually straightforward. For quasi-
harmonic sounds, in which each harmonic is repre-
sented by a single sinusoidal partial, the
time-varying frequencies and amplitudes of the
quasi-harmonic partials in the morphed sound can
be obtained by a weighted interpolation of the
time-varying frequencies and amplitudes of corre-
sponding partials in the source sounds (Dodge and
Jerse 1997). This process is illustrated in Figure 2.

In Loris, although the process of partial construc-
tion is different, the morphing process is funda-
mentally similar. Sound morphing is achieved by
interpolating the time-varying frequencies, ampli-
tudes, and bandwidths of corresponding partials ob-
tained from reassigned bandwidth-enhanced
analysis of the source sounds. Three independent
morphing envelopes control the evolution of the
frequency, amplitude, bandwidth, and noisiness of
the morph.

The description of sounds as ‘‘quasi-harmonic’’
implies a natural correspondence between partials

with the same harmonic number. Even very noisy
quasi-harmonic sounds, which, in traditional sinu-
soidal models, are represented by many short, jit-
tery partials in noisy spectral regions, can be
represented by a single partial for each harmonic
using the reassigned bandwidth-enhanced additive
model (Haken, Fitz, and Christensen forthcoming).
This property of the model greatly simpli� es the
morphing process in Loris and improves the � delity
of morphs for such sounds.

For inharmonic or polyphonic sounds, however,
there may be no obvious correspondence between
partials in the source sounds, or there may be
many possible correspondences. Loris provides
mechanisms for explicitly establishing correspon-
dences between source partials.

Our sound-morphing technique bears a super� -
cial resemblance to object or character morphing as
practiced in the computer graphics community.
The process of transforming one three-dimensional
shape into another may be divided into two com-
plementary problems, the correspondence problem
and the interpolation problem. As with the sound-
morphing technique we describe, the latter is rela-
tively simpler (Kent, Carlson, and Parent 1992).
Lazarus and Verroust (1998) present a survey of
morphing techniques for geometric models, and
Wolberg (1998) presents an extensive discussion of
image-based morphing techniques. While goals and
terminology are shared between the two � elds, the

Figure 2. Equal-weight
morphing of a hypotheti-
cal pair of partials by in-
terpolation of their fre-
quency (left plot) and
amplitude (right plot) en-

velopes. The source partial
envelopes, from a �ute
tone, pitch D4, and a
�utter-tongued �ute tone,
pitch E4, are plotted with
solid and dashed lines,

and the envelopes corre-
sponding to a 50% (equal
weight) morph are plotted
with dotted lines.



49Fitz, Haken, Lefvert, Champion, and O’Donnell

problem domains are suf� ciently different to have
precluded the development of a uni� ed theory of
morphing.

Establishing Partial Correspondences

Correspondences between partials in the source
sounds are established by channelizing and distill-
ing partial data for the individual source sounds.
Partials in each source sound are assigned unique
identi� ers, or labels, and partials having the same
label are morphed by interpolating their frequency,
amplitude, and bandwidth envelopes according to
the corresponding morphing function. The product
of a morph is a new set of partials, consisting of a
single partial for each label represented in any of
the source sounds.

In Loris, channelizing is an automated process of
labeling the partials in an analyzed sound. Partials
can be labeled one by one, but analysis data for a
single sound may consist of hundreds or thousands
of partials. If the sound has a known, simple fre-
quency structure, an automated process is much
more ef� cient.

Channelized partials are most often labeled ac-
cording to their adherence to a harmonic frequency
structure with a time-varying fundamental fre-
quency. The frequency spectrum is partitioned into
non-overlapping channels having time-varying cen-
ter frequencies that are harmonic (i.e., integer) mul-
tiples of a speci� ed reference frequency envelope,
and each channel is identi� ed by a unique label
equal to its harmonic number. Each partial is as-
signed the label corresponding to the channel con-
taining the greatest portion of the partial’s energy.

The reference (fundamental) frequency envelope
for ‘‘channelization’’ can often be constructed auto-
matically by tracking a long, high-energy partial in
the analysis data. The reference envelope can also
be constructed point by point using data obtained
from some other fundamental frequency evaluation
algorithm and imported as, for example, SDIF data
(Wright et al. 1999). Pitch estimation algorithms for
speech signals are discussed extensively in Hess
(1983), and a recent comparative study of such
techniques is found in de Cheveign and Kawahara
(2001).

The sound-morphing algorithm described above
requires that partials in a given source be labeled
uniquely; that is, no two partials can have the
same label. In Loris, distillation is the process for
enforcing this condition. All partials identi� ed
with a particular channel, and therefore having a
common label, are distilled into a single partial,
leaving at most a single partial per frequency chan-
nel and label. Channels that contain no partials are
not represented in the distilled partial data. Partials
that are not labeled (that is, partials having label 0)
are unaffected by the distillation process. All unla-
beled partials remain unlabeled and unmodi� ed in
the distilled partial set.

Note that, owing to the symmetry of the fre-
quency channels employed by the Loris channe-
lizer, a frequency region below half the reference
(fundamental) channel frequency is not covered by
any channel, and therefore partials concentrated at
frequencies far below the reference frequency enve-
lope will remain unlabeled after channelizing. In
practice, few partials, if any, are found in this re-
gion.

Labeled and distilled sets of partials are morphed
by interpolating the envelopes of corresponding
partials according to speci� ed morphing functions.
Partials in one distilled source that have no corre-
sponding partial in the other source are cross-faded
according to the morphing function (Tellman,
Haken, and Holloway 1995). Source partials may
also be unlabeled, or assigned the label 0, to indi-
cate that they have no correspondence with other
sources in the morph. All unlabeled partials in a
morph are cross-faded according to the morphing
function.

When there is no temporal overlap of partials in
a frequency channel, then distillation is simply a
process of linking partials end to end and inserting
silence between the endpoints. When partials in a
frequency channel overlap temporally, then an al-
gorithm is needed to determine a single frequency,
amplitude, and noisiness value for the distilled par-
tial at times in the overlap region. In Loris, the dis-
tiller resolves overlap issues by choosing the
strongest of the overlapping partials (i.e., those
with the most spectral energy) to construct the dis-
tilled partial. The energy in the rejected partials is



50 Computer Music Journal

not lost; rather, it is added to the distilled partial as
noise energy in a process called energy redistribu-
tion (Fitz, Haken, and Christensen 2000a).

In some cases, the energy redistribution effected
by the distiller is undesirable. In such cases, the
partials can be sifted before distillation. The sifting
process in Loris identi� es all the partials that
would be rejected (and converted to noise energy)
by the distiller and assigns them a label of 0. These
sifted partials can then be identi� ed and treated
separately or removed altogether, or they can be
passed through the distiller unlabeled, and cross-
faded in the morphing process.

The various morph sources need not be distilled
using identical sets of frequency channels. How-
ever, dramatic partial frequency sweeps will domi-
nate other audible effects of the morph, so care
must be taken to coordinate the frequency chan-
nels used in the distillation process. Though the
harmonic frequency structure described by the
channelization process may not be a good represen-
tation of the frequency structure of a particular
sound (as in the case of a inharmonic bell sound for
example), it may still yield good morphing results
by labeling partials in such a way as to prevent dra-
matic frequency sweeps.

Temporal Feature Alignment

Signi� cant temporal features of the source sounds
must be synchronized to achieve good morphing re-
sults. Many sounds—particularly, many familiar
monophonic, quasi-harmonic sounds—share a tem-
poral structure that includes such features as at-
tack, sustain, and release. Additionally, many such
sounds have recurring temporal features such as vi-
brato and tremolo cycles. A morph of such sounds
may be unsatisfying if the sources have very differ-
ent temporal feature sets or different numbers of
temporal features, or if related temporal features
(such as the end of the attack, or the beginning of
the release) occur at different times. Moreover,
when synchronizing a sound morph with a visual
sequence, such as a computer animation, temporal
features of the morphed sound must be aligned
with visual events in the animation to make the

relationship between sound and image believable
or seemingly ‘‘natural’’ (Bargar et al. 2000).

Loris provides a dilation mechanism for non-
uniformly expanding and contracting the partial pa-
rameter envelopes to redistribute temporal events.
For example, when morphing instrument tones, it
is common to align the attack, sustain, and release
portions of the source sounds by dilating or con-
tracting those temporal regions.

The process of resolving con� icts between differ-
ent numbers of temporal features, such as different
numbers of vibrato cycles, is beyond the scope of
this article but has been addressed in Tellman,
Haken, and Holloway (1995). This process of time
dilation can occur before or after distillation, but is
an essential component in controlling the evolu-
tion of the morph.

Other Deformations

Deformation and temporal dilation of the partial
parameter envelopes can be applied as needed at
any point in the morphing process. The reassigned
bandwidth-enhanced additive model is highly ro-
bust under such transformations (Fitz, Haken, and
Christensen 2000a). Because the product of the
morphing process in Loris is a set of partials like
any other, it can be further deformed or manipu-
lated in any of its parameters (time, frequency, am-
plitude, and noisiness) or morphed with yet
another source sound to achieve so-called ‘‘N-way’’
morphs.

For example, quasi-harmonic sounds of different
pitches may be pitch-aligned (i.e., shifted to a com-
mon pitch) before morphing, and then the morphed
partials may be shifted again to a desired pitch. (Of
course, in this example, the desired pitch could
also have been chosen as the common pitch before
the morph.)

In some cases, the dramatic effect of a morph and
its apparent ‘‘realism’’ are enhanced by applying
frequency or amplitude deformations that are syn-
chronous with the evolution of the morph. This en-
hanced realism is particularly important when the
sound morph is coupled with a visual presentation.
In a computer animation described by Bargar et al.



51Fitz, Haken, Lefvert, Champion, and O’Donnell

(2000), Toy Angst, slight pitch and amplitude defor-
mations were applied to morphed sounds to accen-
tuate the spasms of a child’s squeaky ball as it was
deformed into toys of other shapes. These were
found to greatly increase the realism of the presen-
tation and the fusion of the audio and visual
morphs into a single percept.

Programming Using the Loris API

Loris consists of a C ` ` class library, a C-linkable
procedural interface, interface � les that allow Loris
extension modules to be built for a variety of
scripting languages using David Beazley’s Simpli-
� ed Wrapper Interface Generator (SWIG; available
at www.swig.org/ [Beazley 1998]), and standard
UNIX/Linux tools that build and install the Loris
library, headers, and extension modules for Python
and Tcl. (Figure 1 illustrates the use of the C-
linkable procedural interface.) Loris is distributed
as free software under the GNU General Public Li-
cense (GPL), and it is available at the Loris web site
(www.cerlsoundgroup.org/Loris/).

Figure 3 demonstrates the use of the Loris C ` `
application programmer’s interface (API) to perform
a simple sound morph between a clarinet tone and
a � ute tone. Reassigned bandwidth-enhanced par-
tials for the two tones are imported from SDIF
analysis � les (‘‘clarinet.sdif’’ and ‘‘� ute.sdif,’’ re-
spectively) presumably generated from a reassigned
bandwidth-enhanced analysis of the two source
sounds.

The partials are channelized and distilled using
reference frequency envelopes that track partials at
the fundamental frequencies of the source tones
(approximately 415 Hz and 291 Hz, respectively).
The FrequencyReference object in Loris constructs
a reference frequency envelope by � nding the
strongest partial in a group whose energy is concen-
trated in a speci� ed range of frequencies. For exam-
ple, the reference envelope for the � ute partials is
constructed by � nding the strongest partial (i.e.,
the partial with the greatest sinusoidal energy) hav-
ing energy concentrated between 250 Hz and 350
Hz. This corresponds to the fundamental partial for

the � ute tone. The � nal argument in the
FrequencyReference constructor in the example in-
dicates that the reference envelope should consist
of 100 samples.

After distilling, the clarinet partials are shifted
downward in pitch by six half steps to match the
pitch of the � ute tone. The distilled and pitch-
aligned partials are dilated to align their attack and
decay portions, and then a simple morph is per-
formed using a morphing function that transforms
the partial frequency, amplitude, and bandwidth
envelopes from those of the clarinet to those of the
� ute between 1 second (the end of the attack por-
tion) and 2 seconds (a half-second before the start
of the decay portion). Finally, the morphed partials
are synthesized and exported to an AIFF � le.

Loris includes a set of interface � les that support
automatic wrapper-interface generation using
SWIG (Beazley 1998). The wrapper code generated
by SWIG can be used to build extension modules
for a variety of scripting language interpreters, such
as Python, Tcl, Perl, and Scheme. Figure 4 shows
the same morphing procedure as Figure 3 using the
Loris Python API. The Python code is somewhat
shorter than the corresponding C ` ` code because
many Loris classes (Channelizer, Distiller, Dilator,
etc.) are invoked procedurally in the scripting inter-
face (e.g., channelize(), distill(), dilate(), etc.), and
also because Python variables need not be declared
before they are used.

Figure 5 shows another morphing operation us-
ing the Loris Python API. In this case, a cello tone
is morphed with a � ute tone. Distilled partials for
the two sources are imported from SDIF � les, and
temporal features are aligned as in previous exam-
ples. The � ute partials are raised by one half step
so that they represent a tone one octave higher
than the cello tone. Before morphing, the labels of
the � ute partials are all doubled so that all the par-
tial labels are even numbers, and the fundamental
is labeled 2, the � rst harmonic above the funda-
mental is labeled 4, and so on. Consequently, no
pitch sweep is perceived in the morph between the
cello tone and the � ute tone one octave higher. In-
stead, the even partials of the cello tone are mor-
phed with the � ute partials to which they are very
near in frequency, and the odd partials of the cello
tone fade out over the morph.



52 Computer Music Journal

Figure 3. Morphing a clari-
net tone with a �ute tone,
using the Loris C ` ` API.
For brevity, #include

directives have been omit-
ted. Complete code exam-
ples are available on the
Loris Web site.



53Fitz, Haken, Lefvert, Champion, and O’Donnell

Figure 3. Continued.



54 Computer Music Journal

Figure 4. Morphing a clari-
net tone with a �ute tone
using the Loris Python
API.



55Fitz, Haken, Lefvert, Champion, and O’Donnell

Figure 5. Morphing a cello
tone with a �ute tone one
octave higher using the
Loris Python API.



56 Computer Music Journal

Applications

Loris provides only programmatic access to the
reassigned bandwidth-enhanced sound model and
to the morphing and manipulation functionality
described in the ‘‘Sound Morphing in Loris’’ section
of this article, and is therefore usable only with dif-
� culty by non-programmers. Recently, however,
several software tools have been developed that al-
low non-programmers to access the powerful sound
modeling, morphing, and manipulation features in
Loris.

Fossa

To bridge the gap between sound designers and
computer programmers, a graphical control applica-
tion called Fossa is under development and distrib-
uted as part of the Loris project. Fossa includes
both a graphical representation of reassigned
bandwidth-enhanced analysis data and the ability
to audition sounds rendered from such data, allow-
ing the user to see and hear the results of different
manipulations. Reassigned bandwidth-enhanced
partials can be imported from Sound Description
Interchange Format (SDIF) � les (Wright et al. 1999),
which are supported by Loris. Alternatively, Fossa
can perform reassigned bandwidth-enhanced analy-
sis of AIFF � les according to user-speci� ed analysis
parameters.

Imported partials are displayed in amplitude, fre-
quency, and noise plots. The parameter envelopes
for a collection of imported partials are plotted
against time in distinct amplitude, frequency, and
noisiness graphs. Several sounds can be imported
into Fossa at once, and manipulations applied to
the displayed partial collection (selected from a
pop-up menu) are immediately re� ected in the pa-
rameter envelope plots. Manipulations available in
Fossa include parameter scaling operations (such as
pitch shifting) as well as channelization and distil-
lation in preparation for morphing. This interactive
graphical representation makes it possible to visu-
alize the effects of complex operations like distilla-

tion and to evaluate the suitability of various
channelization strategies. Fossa’s frequency and
amplitude envelope displays are shown in Figures 6
and 7, respectively.

Fossa provides a graphical interface for interac-
tive construction and application of morphing con-
trol functions. Independent breakpoint envelopes
for morphing frequency, amplitude, and noisiness
can be assembled and manipulated in the click-
and-drag editor shown in Figure 8 and applied using
the Loris morphing algorithms. In the � gure, a clar-
inet sound is morphed into a cello sound over ap-
proximately 4 sec. The frequencies are interpolated
linearly over the duration of the morph, whereas
the amplitudes are morphed more quickly and the
noisiness more slowly over the � rst half of the
morph. The morphed sound is added to the list of
imported sounds for inspection or further manipu-
lation. Finally, morphed or otherwise manipulated
partials can be exported to an SDIF data � le, or
they can be rendered for audition or export to an
AIFF � le.

Fossa was developed by Susanne Lefvert as a
master’s thesis for Lulea University of Technology
in collaboration with University of Chicago, under
the guidance of Mike O’Donnell. Fossa is distrib-
uted as free software under the GNU General Pub-
lic License (GPL), and distributions of the beta
release for UNIX and Linux operating systems are
available at the Loris Web site.

Real-Time Synthesis in Kyma

Together with Kurt Hebel of Symbolic Sound Cor-
poration, we have implemented a stream-based
real-time bandwidth-enhanced synthesizer using
the Kyma Sound Design Workstation (Hebel and
Scaletti 1994).

Many real-time synthesis systems allow sound
designers to manipulate streams of samples. In our
real-time bandwidth-enhanced implementation, we
work with streams of data that are not time-
domain samples. Rather, our Envelope Parameter
Streams encode frequency, amplitude, and band-



57Fitz, Haken, Lefvert, Champion, and O’Donnell

width envelope parameters for each bandwidth-
enhanced partial (Haken, Tellman, and Wolfe 1998;
Haken, Fitz, and Christensen forthcoming).

The Kyma data � ow graph shown in the top half
of Figure 9 produces a polyphonic real-time timbre
morph between sounds analyzed in Loris. The data-
� ow graph depicts six interconnected Kyma Sound
Objects and a speaker output. The parameters for
one of the Sound Objects (the MultiSpectrum-
InRam) are shown in the bottom half of Figure 9.
The parameters for the other Sound Objects are not
shown in this � gure. Real-time data � ow is from
left to right.

The MultiSpectrumInRAM Sound Object reads
amplitude, frequency, and bandwidth envelopes

from reassigned bandwidth-enhanced analysis data
� les prepared by Loris. Weighted averages of enve-
lopes are used generate a morphed envelope param-
eter stream.

The envelope parameter streams feeds into the
Oscillators object, a bank of bandwidth-enhanced
sinusoidal oscillators. Each oscillator synthesizes a
single bandwidth-enhanced partial in the morphed
sound, and all oscillators are evaluated each sample
time. The Noise and LowPassFilter sounds provide
the Oscillators object with band-limited noise val-
ues required for synthesis. The output of Oscilla-
tors is the time-domain sum of all its oscillators.

The timbreControlSpace object is a script that
provides some of the parameters used by Multi-

Figure 6. Parameter
envelope display in Fossa
showing frequency enve-
lopes for partials in a
reassigned bandwidth-
enhanced analysis of an
oboe tone.



58 Computer Music Journal

SpectrumInRam. The MIDIPolyphony object pro-
duces multiple copies the subgraph to its left. In
this example, MIDIPolyphony parameters (not
shown) are set to produce ten copies of the su-
bgraph, resulting in ten-voice polyphony. The MI-
DIPolyphony adds the time-domain samples from
its ten duplicated subgraphs, and that sum is sent
to the speaker.

The parameters for MultiSpectrumInRAM are
shown in the bottom half of Figure 9. File names
are listed for the Analyses parameter. These are
source timbres analyzed in Loris. This example has
24 � le names, with timbres derived from record-
ings of cello, violin, oboe, and bassoon at various
pitches and dynamic levels. The source timbres
have been time-aligned (to align manually speci� ed

temporal events) and frequency-aligned (to align
fundamental frequencies). The 24 source timbres
are indexed numerically by the expressions in the
Indices parameter. This example has eight expres-
sions in the Indices parameter, which continually
select eight of the total 24 source timbres for an
eight-way morph. The eight expressions in the
AmpWeights parameter specify the morphing
envelope for sine and noise amplitudes of the par-
tials in the eight source timbres in the eight-way
morph. The eight expressions in the PitchWeights
parameter (in this case identical to the Amp-
Weights expressions) specify the morphing enve-
lope for frequencies of the partials in the eight-way
morph.

The FirstPartial and NbrPartials parameters

Figure 7. Parameter
envelope display in Fossa
showing amplitude enve-
lopes for partials in a
reassigned bandwidth
enhanced analysis of an
oboe tone.



59Fitz, Haken, Lefvert, Champion, and O’Donnell

specify that 160 partials should be used from each
source timbre. Setting the Rate parameter to 1 indi-
cates the rate of timbral evolution (the step rate
through the time-aligned envelopes) matches the
source timbres. The Trigger parameter speci� es a
gate signal to start and stop notes. The Release-
Time parameter speci� es the release, and the
ReleaseSpctrlDmping speci� es faster damping of
higher partials during the release. Frequency speci-
� es the frequency of the synthesis, and the Level
parameter speci� es an overall attenuation for the
morphed amplitudes.

Several of the parameters are functions of Key-
Down, KeyNumber, KeyTimbre, and KeyVelocity.
These correspond to the real-time MIDI-derived
signals gate, fractional continuous note number
(i.e., MIDI note number plus pitch bend), continu-
ous controller value (0–127), and fractional contin-

uous volume (i.e., MIDI velocity scaled coninu-
ously by channel volume), respectively.

The ReleaseTime object includes an expression
that results in a long release for the cello timbres, a
medium release time for the violin timbres, and a
short release time for the bassoon and oboe tim-
bres. The Level parameter provides loud and quiet
variations as a function of KeyVelocity.

The ind, x, y, and z values are provided by the
script contained in timbreControlSpace, shown in
Figure 10. The ind parameter determines which
eight of the 24 source timbres are to be morphed
based on the MIDI pitch (KeyNumber) and the
pitch of the source timbres. The x parameter con-
trols morphing based on the current fractional
KeyNumber, and the y parameter controls morph-
ing based on the KeyTimbre. Finally, the z parame-
ter controls morphing based on KeyVelocity.

Figure 8. Morphing func-
tion editor in Fossa, show-
ing individual frequency,
amplitude, and noisiness
morphing functions for a
morph between a cello
and a clarinet.



60 Computer Music Journal

The data� ow graph in Figure 9 and the script in
Figure 10 are con� gured for use with a Continuum
Fingerboard. The Continuum Fingerboard is a new
MIDI controller that allows continuous control
over each note in a performance (Haken, Tellman,
and Wolfe 1998). It resembles a traditional key-
board in that it is approximately the same size and
is played with ten � ngers. Like keyboards support-
ing polyphonic aftertouch, it continually measures
each � nger’s pressure. The Continuum Fingerboard
also resembles a fretless string instrument in that
it imposes no discrete � nger positions; any pitch
may be played, and smooth glissandi are possible. It
tracks in three dimensions the position for each

� nger pressing on the playing surface. These con-
tinuous three-dimensional outputs (mapped to
KeyNumber, KeyVelocity, and KeyTimbre in
Kyma) are a convenient source of control parame-
ters for real-time manipulations.

Using Loris with Csound

A set of Csound unit generators supporting modi-
� ed synthesis and morphing of reassigned
bandwidth-enhanced model data is under develop-
ment. Csound is a � exible and extensible orchestra/
score system in the style of ‘‘Music N’’ languages

Figure 9. Data �ow graph
consisting of six Sound
Objects (top) and parame-
ters for one of the Sound
Objects (bottom) in the

Symbolic Sound Kyma en-
vironment. This data �ow
graph produces a poly-
phonic timbre morph
between sounds using

reassigned bandwidth-
enhanced analysis data
prepared in Loris.



61Fitz, Haken, Lefvert, Champion, and O’Donnell

and is one of the most popular and widely distrib-
uted software synthesis applications (Boulanger
2000). Csound supports a wide variety of synthesis
techniques, including analysis-based techniques,
such as the phase vocoder (Dolson 1986) and linear
predictive coding.

Csound unit generators for importing and manip-
ulating reassigned bandwidth-enhanced analysis
data will provide Csound’s huge user community
with the sound morphing and manipulation capa-
bilities of Loris. These tools will enable Csound
users to integrate high-� delity sound morphing and
transformation into their own compositions and
sound designs, and they will further allow Loris
users to avail themselves of the rich set of control
structures and sound design tools available in
Csound.

Bandwidth-enhanced additive synthesis is per-
formed by the Csound unit generators called loris-
read and lorisplay. The lorisplay unit generator
renders a stored set of reassigned bandwidth-
enhanced partials using the bandwidth-enhanced
sinusoidal oscillator implemented in the Loris li-
brary. The frequency, amplitude, bandwidth (noisi-
ness), and phase envelopes for the partials are
imported from analysis data stored in Sound De-
scription Interchange Format (SDIF) data � les
(Wright et al. 1999) using lorisread. The lorisread
unit generator stores the partial data in a labeled
location in memory for access by other Csound
unit generators.

The syntax for the Loris Csound modules is
shown in Figure 11. First, lorisread is initialized
with several parameters: the name of the SDIF con-

Figure 10. Smalltalk
script associated with the
timbreControlSpace Sound
Object in Figure 9.



62 Computer Music Journal

trol � le (i� lcod); an arbitrary integer index (isto-
reidx) used to identify the memory location of the
partial data for reference by other generators; and,
optionally, the partial fade time (ifadetime), used to
control the turn-on and turn-off rate for partials
having non-zero initial and � nal amplitudes. Be-
cause the bandwidth-enhanced oscillator parame-
ters are updated at the global control rate (krate)
speci� ed in the Csound orchestra, the value of the
fade time is approximate and represents the mini-
mum time over which partials fade in and out. If
unspeci� ed, the fade time defaults to 0.

The ktimpnt parameter is a control-rate time in-
dex into the reassigned bandwidth-enhanced analy-
sis data. It is an absolute time index, in seconds,
and functions identically to the time index parame-
ter used by other Csound resynthesis unit genera-
tors, such as the phase vocoder pvoc and the LPC
resynthesis modules lpread and lpreson, which al-
low the sound to be rendered forwards or back-
wards, or at varying speeds.

Both lorisread and lorisplay apply control-rate
scaling to the frequency, amplitude, and bandwidth
envelopes of the reassigned bandwidth-enhanced
partials. The parameter kfreqenv is a control-rate
transposition factor: a value of 1 incurs no transpo-
sition, 1.5 transposes up a perfect � fth, and 0.5
transposes down an octave. Similarly, kampenv
and kbwenv scale the partial amplitudes and band-
width, and a value of 1 leaves those parameters un-
modi� ed.

The lorismorph unit generator performs sound
morphing using two stored sets of bandwidth-
enhanced partials and stores a new set of partials
representing the morphed sound. The morph is per-
formed by linearly interpolating the parameter en-
velopes (frequency, amplitude, and bandwidth, or

noisiness) of the bandwidth-enhanced partials ac-
cording to control-rate frequency, amplitude, and
bandwidth morphing functions.

The syntax for lorismorph is shown in Figure 11.
Like lorisplay, lorismorph uses integer indices to
refer to its source and target partial sets. A third in-
dex speci� es the location of the morphed partial
set. The morphed partials can be rendered using
lorisplay or subjected to further morphing. Because
each set of partials has its own time index (the
ktimpnt parameter of lorisread), feature-alignment
can be performed in the Csound orchestra as previ-
ously described.

The sound morph is described by three control-
rate morphing envelopes. First, kfreqmorphenv de-
scribes the interpolation of partial frequency values
in the two source sounds. When kfreqmorphenv is
0, partial frequencies are obtained from the partials
in i� lename0. When kfreqmorphenv is 1, partial
frequencies are obtained from the partials in i� len-
ame1. When kfreqmorphenv is between 0 and 1,
the partial frequencies are interpolated between the
two sources. Interpolation of partial amplitudes and
bandwidth (noisiness) coef� cients are similarly de-
scribed by kampmorphenv and kbwmorphenv.

The use of lorismorph is illustrated by the
Csound orchestra example in Figure 12. The instru-
ment in Figure 12 performs a sound morph be-
tween a � utter-tongued trombone tone and a cat’s
meow using reassigned bandwidth-enhanced par-
tials stored in ‘‘trombone.sdif’’ and ‘‘meow.sdif.’’
The data in these SDIF � les have been channelized
and distilled to establish correspondences between
partials as previously described.

The two sets of partials are imported using loris-
read, which stores the partials in memory locations
labeled 1 and 2. Each of the original sounds has

Figure 11. The syntax of
the Csound unit generators
supporting bandwidth-
enhanced additive synthe-
sis and sound morphing
based on the Loris library.



63Fitz, Haken, Lefvert, Champion, and O’Donnell

four notes, and the morph is performed over the
second note in each sound (from 0.75 to 1.2 sec in
the � utter-tongued trombone tone, and from 1.7 to
2.2 sec in the cat’s meow). The different time index
functions, kttbn and ktmeow, align those segments
of the source and target partial sets with the speci-
� ed morph start, morph end, and overall duration

parameters. Two different morphing functions are
used, so that the partial amplitudes and bandwidth
coef� cients morph quickly from the trombone val-
ues to the cat’s-meow values, and the frequencies
make a more gradual transition. The morphed par-
tials are stored in a memory location labeled 3 and
rendered by the subsequent lorisplay instruction.

Figure 12. A Csound sound
morphing example.



64 Computer Music Journal

They could also have been used as a source for an-
other morph in a three-way morphing instrument.

The lorisread, lorisplay, and lorismorph unit gen-
erators are not currently part of the standard
Csound source or binary distributions, but Csound
is designed to be extensible by incorporation of
user-de� ned unit generators. Following several
steps outlined in Csound documentation (see, for
example, Boulanger 2000) and described in detail in
a document distributed with Loris, these and other
custom unit generators can be added to the Csound
source code and built into an enhanced Csound
application.

Conclusion

The reassigned bandwidth-enhanced analyzer im-
plemented in the Loris software library supports
high-� delity, robust modeling of a wide variety of
sounds. The analyzer includes a small set of non-
interacting parameters that are easily tuned to ar-
rive at an optimal con� guration for a particular
sound. Loris provides manipulation and transfor-
mation operations on the reassigned bandwidth-
enhanced model data needed to implement sound
morphing. Previously accessible only through pro-
grammatic interfaces (C/C ` ` and various scripting
languages), a variety of new software tools have
been presented that make the sound modeling and
morphing capabilities of Loris available to compos-
ers, sound designers, and other non-programmers.

References

Allen, J. B., and L. R. Rabiner. 1977. ‘‘A Uni� ed Ap-
proach to Short-Time Fourier Analysis and Synthesis.’’
Proceedings of the IEEE 65(11):1558–1564.

Auger, F., and P. Flandrin. 1995. ‘‘Improving the Reada-
bility of Time-Frequency and Time-Scale Representa-
tions by the Reassignment Method.’’ IEEE
Transactions on Signal Processing 43(5):1068–1089.

Bargar, R., A. Betts, I. Choi, and K. Fitz. 2000. ‘‘Models
and Deformations in Procedural Synchronous Sound
for Animation.’’ Proceedings of the 2000 International
Computer Music Conference. San Francisco: Interna-

tional Computer Music Association, pp. 205–208.
Beazley, D. M. 1998. ‘‘SWIG and Automated C/C ` `

Scripting Extensions.’’ Dr. Dobbs Journal 282:30–36.
Boulanger, R., ed. 2000. The Csound Book. Cambridge,

Massachusetts: MIT Press.
de Cheveign, A., and H. Kawahara. 2001. ‘‘Comparative

Evaluation of F0 Estimation Algorithms.’’ Proceedings
of Eurospeech 2001. Bonn, Germany: International
Speech Communication Association.

Dodge, C., and T. A. Jerse. 1997. Computer Music:
Synthesis, Composition, and Performance, 2nd ed.
New York: Shirmer Books.

Dolson, M. 1986. ‘‘The Phase Vocoder: A Tutorial.’’
Computer Music Journal 10(4):14–27.

Fitz, K., and L. Haken. 1996. ‘‘Sinusoidal Modeling and
Manipulation Using Lemur.’’ Computer Music Journal
20(4):44–59.

Fitz, K., L. Haken, and P. Christensen. 2000a. ‘‘A New
Algorithm for Bandwidth Association in Bandwidth-
Enhanced Additive Sound Modeling.’’ Proceedings of
the 2000 International Computer Music Conference.
San Francisco: International Computer Music Associa-
tion, pp. 384–387.

Fitz, K., L. Haken, and P. Christensen. 2000b. ‘‘Transient
Preservation Under Transformation in an Additive
Sound Model.’’ Proceedings of the 2000 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 392–395.

Haken, L., K. Fitz, and P. Christensen. Forthcoming.
‘‘Beyond Traditional Sampling Synthesis: Real-Time
Timbre Morphing Using Additive Synthesis.’’ In J. W.
Beauchamp, ed. Sound of Music: Analysis, Synthesis,
and Perception. Berlin: Springer-Verlag.

Haken, L., E. Tellman, and P. Wolfe. 1998. ‘‘An Indis-
crete Music Keyboard.’’ Computer Music Journal
221:30–48.

Hebel, K., and C. Scaletti. 1994. ‘‘A Framework for the
Design, Development, and Delivery of Real-Time
Software-Based Sound Synthesis and Processing
Algorithms.’’ Audio Engineering Society Preprint
A-3(3874).

Hess, W. 1983. Pitch Determination of Speech Signals.
Berlin: Springer-Verlag.

Kent, J., W. Carlson, and R. Parent. 1992. ‘‘Shape Trans-
formation for Polyhedral Objects.’’ Proceedings for the
19th Annual Conference on Computer Graphics and
Interactive Techniques. New York: ACM Press,
pp. 47–54.

Lazarus, F., and A. Verroust. 1998. ‘‘Three-Dimensional



65Fitz, Haken, Lefvert, Champion, and O’Donnell

Metamorphosis: A Survey.’’ The Visual Computer
14(8/9): 387–389.

Masri, P., A. Bateman, and N. Canagarajah. 1997. ‘‘A Re-
view of Time-Frequency Respresentations with Appli-
cations to Sound/Music Analysis-Resynthesis.’’
Organised Sound 2(3):193–205.

McAulay, R. J., and T. F. Quatieri. 1986. ‘‘Speech
Analysis/Synthesis Based on a Sinusoidal Representa-
tion.’’ IEEE Transactions on Acoustics, Speech, and
Signal Processing 34(4):744–754.

Serra, X., and J. O. Smith. 1990. ‘‘Spectral Modeling Syn-
thesis: A Sound Analysis/Synthesis System Based on a

Deterministic Plus Stochastic Decomposition.’’ Com-
puter Music Journal 14(4):12–24.

Tellman, E., L. Haken, and B. Holloway. 1995. ‘‘Timbre
Morphing of Sounds with Unequal Numbers of Fea-
tures.’’ Journal of the Audio Engineering Society
43(9):678–689.

Wolberg, G. 1998. ‘‘Image Morphing: A Survey.’’ The
Visual Computer 14(8/9): 360–372.

Wright, M., et al. 1999. ‘‘Audio Applications of the
Sound Description Interchange Format Standard.’’
Audio Engineering Society 107th Convention preprint
#5032. New York: Audio Engineering Society.




