Psychoacoustics

Pantelis N. Vassilakis Ph.D.

Module 2 Homework (Acoustics)

Student Name: _____

 (2pts) Write the mathematical expression for a simple harmonic motion (*i.e.* displacement y as a function of time t) with frequency f, amplitude A, and initial phase φ

2) (5*pts*) Write the values for T(sec/cycle), f(Hz), A, and φ (*degrees*) for the signal in the figure, below, including units where needed, and use 3 of these 4 values to write the sinusoidal equation of displacement y(t) for this signal (*i.e.* as in the previous question but with actual values inserted)

3) (*6pts*) What are the two main reasons for using log rather than linear math to describe sound intensity?

a)

b)

- 4) (8*pts*) Complete the following equations (show your work):
- a) 50dB SIL = ____ W/m^2
- b) 10^{-3} W/m² = _____ dB SIL
- c) 50dB SIL + 50dB SIL = _____ dB SIL
- d) 10 * 50dB SIL= _____ dB SIL

5) (6pts) Fill-in the blanks

- a) (*lpt*) Doubling the intensity of a sound results in a SIL increase by _____ dB
- b) (1pt) Doubling the pressure of a sound results in a SPL increase by _____ dB
- c) (*lpt*) <u>Regarding a vibration's amplitude A and frequency f</u>, intensity is proportional to ______ and _____ respectively
- d) (2pts) The strongest intensity that can be safely heard (*i.e.* threshold of pain) is _____
 W/m² (I) or _____ dB (SIL), or _____ Pa (Pressure)
- e) (*1pt*) For sinusoidal signals, $P_{rms} = _$ * P_{Peak}

6) (6*pts*) Assuming c = 345 m/sec at 20⁰ Celsius, what is the wavelength λ (including units) of a sinusoidal wave with f = 50 Hz at (show your work):

a) 20^0 Celsius?

b) 25⁰ Celsius?

7) (4pts) How much delay will have to be applied to speakers placed at the far end of a 90m-long auditorium for the sound from the speakers to be in synch with the sound arriving directly from the stage (assume c = 360m/sec - show your work)?

8) (12pts) Fill-in the blanks

- a) (*1pt*) In transverse waves, energy moves ______ to the direction of the vibration of the medium's particles while, in longitudinal waves, energy moves ______ to the direction of the vibration of the medium's particles.
- b) (2pts) Standing waves arise in a medium when vibrational energy is __________ rather than moving through them. The creation of standing waves is the result of
- c) (2pts) According to the Inverse Square Law, if the intensity level of a sound wave 1m from the source is 50dB, it will drop to ______ dB, 10m away from the source (show you work).

- e) (2pts) Assuming the amplitude of the 1st component of a complex signal is 1, the amplitude of the 4th component will be ______ for an ideal sawtooth signal and ______ for an ideal square signal, while the amplitude of the 3rd component will be ______ for an ideal triangle signal and ______ for an ideal square signal.
- f) (2pts) Resonance occurs when a system is driven at a ______ equal to its ______, resulting in a [choose between maximum and minimum] ______ amount of energy transfer.
- **9**) (*6pts*) The violation of two assumptions in the standard application of Fourier analysis has one main undesirable side-effect. List the two assumptions and the one side-effect.

Assumption 1:

Assumption 2:

Undesirable side-effect:

10) (4*pts*) What is the total noise sound intensity level (in dB) of a 1000Hz-wide band of noise with noise spectrum level of 40dB? (*show your work*)

11) (4*pts*) Modulating the amplitude of a sine (f = 300Hz and A = 1) with $f_{mod} = 10$ Hz and *modulation depth* (modulation index) = 50% will introduce two sidebands with

 $f_1 = _$ - $A_1 = _$ and $f_2 = _$ - $A_2 = _$

12) (*6pts*) The natural frequency of a Helmholtz resonator is 200Hz. What will this frequency be if the resonator's neck becomes 4 times longer? (*show your work*)

- 13) (10pts) Fill-in the blanks
 - a) (*1pt*) The angle of reflection is ______ the angle of incidence.
 - b) (1pt) When a sound wave crosses two media, the larger the ______
 ______ between the two media the larger the proportion of reflected versus transmitted sound energy.

- c) (*1pt*) Reverberation time is defined as the time it takes for a sound to lose _____dB of its original level.
- d) (2pts) The ability of sound waves to bend around obstacles & through openings whose smallest dimension is ______ than the waves' wavelength is called
- e) (*lpt*) A moving sound source will create a shock wave if ______.
- g) (*3pts*) Adding two sine signals with slightly different frequencies $f_1 \& f_2$ results in a complex signal whose amplitude fluctuates between a max and a min value because

14) (6*pts*) I) In *Figure 1*, below, will listener A be more likely to hear the bass guitar or the flute sound coming from the stage, S, and why?

II) In *Figure 2*, below (point-source S positioned at the middle opening), which listener (A or B) is more likely to hear the bass guitar louder and why?

Figure 1

- I):
- II):
- 15) (*3pts*) Match the mathematical expressions to the figures, below, by writing A, B, or C, next to each expression (v_1 = sound speed in Medium 1; v_2 sound speed in Medium 2).

16) (*12pts*) Fill-in the blanks

I) (4pts) Musical instruments can be seen as systems that involve three physical components:
a) ______ b) _____ and c) _____.
A force exciting (a) will affect the resulting signal's spectrum as follows: forces applied close to structures supporting (a) will give spectra richer in ______ frequencies and forces applied during a long contact with (a) will be give spectra richer in ______ frequencies.

	The function of (b) is to produce the desirable a	amount of m	natching
	between (a) and (c), allowing for the proper bal	ance between	_ and
	energy. The shape and materials of (c) should be such as to amplify a range of that matches, as much as possible, the playing range of the instrument.		
II)	(<i>1pt</i>) Similar to the long-time average spectrum	n of noise, the spectrum of an im	pulse signal
	has [number] compo	onents with, in general [chose bet	tween equal &
	unequal] amplitude	S.	
III)	(2 <i>pts</i>) The cutoff frequencies of a band-pass filter are defined in terms of a)dB bandwidth, b)dB bandwidth, or c) ERB (spell this out)		
	The Q of a band-pass filter is defined as		
IV)	(<i>3pts</i>) A system is nonlinear if its output is		of the
	input. In terms of sound signals, nonlinear syst	ems output spectral components	not present in
	the input signal, which are called	products. The two most c	common types
	of such nonlinearity are	and	
V)	(2pts) The Nyquist-Shannon sampling theorem states that a signal must be sampled at a rate		
	(samples/sec) equal to the	e largest frequency to be sampled	d. The bit depth
	(bits/sample) determines the		

_____ that can be digitally represented.

16bit sampling can represent a ______ of _____ dB.